Tetrahedron Letters 50 (2009) 6534-6536

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Lycopladine H, a novel alkaloid with fused-tetracyclic skeleton from Lycopodium complanatum

Kan'ichiro Ishiuchi^a, Takaaki Kubota^a, Shigeki Hayashi^b, Toshiro Shibata^b, Jun'ichi Kobayashi^{a,*}

^a Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan ^b Hokkaido Division, Research Center for Medicinal Plant Resources, National Institute of Biomedical Innovation, Nayoro 096-0065, Japan

ARTICLE INFO

ABSTRACT

Article history: Received 18 August 2009 Revised 3 September 2009 Accepted 7 September 2009 Available online 10 September 2009

Keywords: Lycopodium alkaloid Lycopodium complanatum Lycopladine H

A novel *Lycopodium* alkaloid, lycopladine H (1), with a fused-tetracyclic ring system consisting of an azocane ring connected to a [2,2,2]-bicyclooctane ring and a 3-piperidone ring, was isolated from the club moss Lycopodium complanatum. The structure and relative stereochemistry of **1** were elucidated on the basis of spectroscopic data.

© 2009 Elsevier Ltd. All rights reserved.

Club moss (Lycopodiaceae) is known to be a rich source of Lycopodium alkaloids1 possessing unique heterocyclic ring systems such as C₁₆N, C₁₆N₂, and C₂₇N₃, which have attracted great interest from biogenetic,² synthetic,³ and biological⁴ points of view. In our continuing efforts to find biogenetically interesting and structurally unique Lycopodium alkaloids, we have isolated a number of new Lycopodium alkaloids⁵ possessing complex fused-cyclic skeletons, which have attracted as challenging targets for total synthesis.⁶ Further investigations of extracts of newly collected Lycopodium complanatum resulted in the isolation of a new Lycopodium alkaloid, lycopladine H (1), possessing a novel fused-tetracyclic ring system consisting of an azocane ring connected to a [2,2,2]-bicyclooctane ring and a 3-piperidone ring. In this Letter, we describe the isolation and structure elucidation of 1.

The club moss *L. complanatum*⁷ (2.33 kg) collected at Nayoro in Hokkaido was extracted with MeOH aq, and the extracts were partitioned between EtOAc and 3% tartaric acid. Water-soluble mate-

rials, adjusted at pH 9 with satd Na₂CO₃ aq, were partitioned with CHCl₃. CHCl₃-soluble materials were subjected to an amino silica gel column (*n*-hexane/EtOAc, $1:0 \rightarrow 1:1$, CHCl₃/MeOH, $1:0 \rightarrow 1:1$, and then CHCl₃/MeOH/H₂O, 6:4:1). The HMQC spectrum (CDCl₃) of the fraction eluted with n-hexane/EtOAc (4:1) showed a cross-peak⁸ at $\delta_{\rm H}$ 2.90/ $\delta_{\rm C}$ 55.0, which did not ascribe to any known Lycopodium alkaloids, indicating the existence of a new alkaloid. Therefore, the fraction was further purified by a silica gel column chromatography (CHCl₃/MeOH, 200:1) to afford lycopladine H (1, 0.00003% yield).9

Lycopladine H (1) { $[\alpha]_D^{22}$ –116 (*c* 0.34, CHCl₃)} showed the pseudomolecular ion peak at *m/z* 278 (M+H)⁺ in the ESIMS, and the molecular formula, C₁₆H₂₃NO₃, was established by HRESIMS $[m/z 278.1745, (M+H)^{+}, \Delta -1.1 \text{ mmu}]$. IR absorptions implied the presence of hydroxy and keto carbonyl (3450 and 1720 cm^{-1} , respectively) functionalities. ¹H and ¹³C NMR data (Table 1) and the HMQC spectrum revealed the existence of 16 carbons due to two carbonyl carbons, two sp³ quaternary carbons, three sp³ methines, eight sp³ methylenes, and one methyl group. Among them, a signal for one sp³ quaternary carbon (δ_c 78.5) was attributed to a carbon attached to a hydroxy group.

The gross structure of **1** was elucidated by analysis of 2D NMR data including the ¹H–¹H COSY, TOCSY, HMOC, and HMBC spectra in CD₃OD (Fig. 1). The ¹H-¹H COSY and TOCSY spectra of **1** disclosed three structural units a (C-1-C-3), b (C-6-C-8 and C-15-C-16), and **c** (C-9–C-11). Connectivities of C-1 (δ_{C} 48.7), C-5 (δ_{C} $(70.3)^{10}$, and C-9 ($\delta_{\rm C}$ 53.0) through a nitrogen atom were revealed by HMBC correlations for H-1a ($\delta_{\rm H}$ 3.35) to C-5 and C-9. An HMBC correlation for H₃-16 ($\delta_{\rm H}$ 0.87) to C-14 ($\delta_{\rm C}$ 56.1) suggested the connectivity between C-14 and C-15. HMBC cross-peaks of H-15 ($\delta_{\rm H}$ 1.73) to C-5 and C-13 ($\delta_{\rm C}$ 215.7) indicated the connectivity of

^{*} Corresponding author. Tel.: +81 11 706 3239; fax: +81 11 706 4989. E-mail address: jkobay@pharm.hokudai.ac.jp (J. Kobayashi).

^{0040-4039/\$ -} see front matter © 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2009.09.035

Table 1			
¹ H and ¹³ C NMR data of lycopladine	H (1) in	CD ₃ OD	at 300 K

Position	$\delta_{\rm H}$	δ_{C}	НМВС
1a	3.35 (1H, ddd, 13.3, 10.1,	48.7	3a, 3b, 9a, 9b
1b	2.67 (1H, br d, 13.3 Hz)		
2	1.98 (2H, m)	27.4	3a
3a	2.62 (1H, m)	37.4	1a
3b	2.41 (1H, br d, 15.0 Hz)		
4		207.6	3a, 3b, 14
5		70.3	1a, 6a, 6b, 7, 9a, 9b, 14, 15
6a	2.60 (1H, m)	26.0	8b, 14
6b	2.23 (1H, br d, 15.9 Hz)		
7	2.08 (1H, m)	40.3	6a, 8b, 11a, 11b
8a	1.74 (1H, m)	32.2	6a, 6b, 14, 15
8b	1.55 (1H, m)		
9a	3.25 (1H, ddd, 15.5, 8.0,	53.0	1a, 11a, 11b
	3.3 Hz)		
9b	2.73 (1H, ddd, 15.5, 7.9,		
	4.0 Hz)		
10a	1.80 (1H, m)	26.5	11a, 11b
10b	1.67 (1H, m)		
11a	2.01 (1H, m)	39.8	9a, 9b
11b	1.88 (1H, ddd, 14.2, 7.8,		
	4.3 Hz)		
12		78.5	6a, 8a, 11a, 11b, 14
13		215.7	7, 11b, 14, 15
14	2.96 (1H, s)	56.1	15, 16
15	1.73 (1H, m)	28.5	8a, 8b, 16
16	0.87 (3H, d, 6.5 Hz)	21.4	8b, 14, 15

^a ¹H and ¹³C NMR spectra were recorded at 600 MHz and 150 MHz, respectively.

Figure 1. Selected 2D NMR correlations for lycopladine H (1).

C-5, C-13, and C-15 via C-14. Connectivities of C-4 (δ_C 207.6), C-6 (δ_C 26.0), and C-14 through C-5 were elucidated by HMBC correlations for H-14 (δ_H 2.96) to C-4 and C-6, and H-7 and H-11b to C-13. The connectivity of C-7 (δ_C 40.3) and C-11 (δ_C 39.8) through C-12 (δ_C 78.5) was implied by HMBC correlations for H-6a (δ_H 2.60) to C-12, and H₂-11 (δ_H 2.01 and 1.88) to C-7 and C-12. An HMBC correlation for H-14 to C-12 revealed the connectivity of C-12 and C-13. An HMBC cross-peak of H₂-3 to C-4 suggested that unit **a** constituted a part of the 3-piperidone ring (C-1–C-5 and N-1). Thus, the gross structure of lycopladine H was elucidated to be **1** (Fig. 1).

The phase-sensitive NOESY spectrum of **1** showed cross-peaks as shown in computer-generated 3D drawing (Fig. 2). The chair form of the 3-piperidone ring was revealed from NOESY correlations for H-14/H-1a and H-14/H-3a. NOESY cross-peaks of H-6b/H-9a and H-6b/H-10a suggested that C-9 was in an axial position of the 3-piperidone ring. NOESY correlations for H-6a/H-8a and H-8b/H-16 indicated an equatorial position of C-16 in the cyclohexane ring (C-5–C-8 and C-14–C-15). Thus, the relative stereo-chemistry of lycopladine H was assigned as **1** (Fig. 2).

Plausible biogenetic path for lycopladine H (1) is proposed in Scheme 1. Recently, we proposed that lycopladine A^{5b} could be derived from an intermediate possessing phlegmarane skeleton through a hypothetical precursor X (route a). Lycopladine H (1) may also be generated from the precursor X by nucleophilic addi-

Figure 2. Selected NOESY correlations and relative stereochemistry for lycopladine H (1).

Scheme 1. Plausible biogenetic path for lycopladine H (1).

tion of the nitrogen atom to C-9 and Mannich-type addition of C-14 to C-5 (route b).

Lycopladine H (1) is an unprecedented C_{16} N-type *Lycopodium* alkaloid possessing a novel fused-tetracyclic ring system consisting of an azocane ring (C-9–C-14, C-5, and N-1) fused to a [2,2,2]-bicyclooctane ring and a 3-piperidone ring. Lycopladine H (1) did not show cytotoxicity against L1210 murine leukemia and KB human epidermoid carcinoma cells ($IC_{50} > 10 \mu g/ml$) in vitro.

Acknowledgments

The authors thank Ms. S. Oka, Equipment Management Center, Hokkaido University, for measurements of ESIMS. This work was partly supported by a research fellowship for young scientists from the Japan Society for the Promotion of Science (to K.I.), and a Grantin-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References and notes

- 1. For reviews of the Lycopodium alkaloids, see: (a) Hirasawa, Y.; Kobayashi, J.; Morita, H. Heterocycles 2009, 77, 679-729; (b) Kobayashi, J.; Morita, H., In The Alkaloids; Cordell, G. A., Ed.; Academic Press: New York, 2005; Vol. 61, p 1. and references cited therein.
- 2 (a) Hemscheidt, T.; Spenser, I. D. J. Am. Chem. Soc. 1996, 118, 1799-1800; (b) Hemscheidt, T.; Spenser, I. D. J. Am. Chem. Soc. **1993**, 115, 3020–3021.
- (a) Kozak, J. A.; Dake, G. R. Angew. Chem., Int. Ed. 2008, 47, 4221-4223; (b) 3 Nishikawa, Y.; Kitajima, M.; Takayama, H. Org. Lett. **2008**, *10*, 1987–1990; (c) Kozaka, T.; Miyakoshi, N.; Mukai, C. J. Org. Chem. 2007, 72, 10147–10154; (d) Evans, D. A.; Scheerer, J. R. *Angew. Chem., Int. Ed.* **2005**, *44*, 6038–6042; (e) Yen, C.-F.; Liao, C.-C. *Angew. Chem., Int. Ed.* **2002**, *41*, 4090–4093; (f) Cassayre, J.; Gagosz, F.; Zard, S. Z. Angew. Chem., Int. Ed. **2002**, 41, 1783–1785; (g) Sha, C.-K.; Lee, F.-K.; Chang, C.-J. J. Am. Chem. Soc. 1999, 121, 9875-9876; (h) Hirst, G. C.; Johnson, T. O., Jr.; Overman, L. E. J. Am. Chem. Soc. 1993, 115, 2992-2993.
- Liu, J. S.; Zhu, Y. L.; Yu, C. M.; Zhou, Y. Z.; Han, Y. Y.; Wu, F. W.; Qi, B. F. Can. J. Chem. 1986, 64, 837–839.
- 5. (a) Hirasawa, Y.; Kobayashi, J.; Morita, H. Org. Lett. 2006, 8, 123-126. references cited therein; (b) Ishiuchi, K.; Kubota, T.; Morita, H.; Kobayashi, J. Tetrahedron Lett. 2006, 47, 3287-3289; (c) Hirasawa, Y.; Morita, H.; Kobayashi, J. Org. Lett.

2004, 6, 3389-3391; (d) Kobayashi, J.; Hirasawa, Y.; Yoshida, N.; Morita, H. J. Org. Chem. 2001, 66, 5901-5904; (e) Ishiuchi, K.; Kubota, T.; Hayashi, S.; Shibata, T.; Kobayashi, J. Tetrahedron Lett. 2009, 50, 4221-4224.

- (a) West, S. P.; Bisai, A.; Lim, A. D.; Narayan, R. R.; Sarpong, R. J. Am. Chem. Soc. 6. 2009, 131, 11187-11194; (b) Chandra, A.; Pigza, J. A.; Han, J.-S.; Mutnick, D.; Johnston, J. N. J. Am. Chem. Soc. 2009, 131, 3470-3471; (c) Beshore, D. C.; Smith, A. B., III. J. Am. Chem. Soc. 2008, 130, 13778–13789; (d) Nilsson, B. L.; Overman, L. E.; Alaniz, J. R.; Rohde, J. M. J. Am. Chem. Soc. 2008, 130, 11297-11299.; (e) Bisai, A.; West, S. P.; Sarpong, R. J. Am. Chem. Soc. 2008, 130, 7222-7223; (f) Staben, S. T.; Kennedy-Smith, J. J.; Huang, D.; Corkey, B. K.; LaLonde, R. L.; Toste, F. D. Angew. Chem., Int. Ed. 2006, 45, 5991-5994.
- 7. The voucher specimen has been deposited in the herbarium of Hokkaido University.
- 8 This cross-peak corresponded to H-14/C-14 of 1.
- This cross-peak corresponded to H-14/C-14 of **I**. Lycopladine H (1): colorless amorphous solid; $[\alpha]_D^{22} 116$ (*c* 0.34, CHCl₃); IR (film) v_{max} 3450, 2920, 1720 cm⁻¹, ESIMS *m*/*z* 278 (M+H)⁺; HRESIMS *m*/*z* 278.1745 [(M+H)⁺ calcd for C₁₆H₂₄NO₃, 278.1756]. 9.
- 10. A spiro carbon connected to a nitrogen atom and a carbonyl carbon of compound 15 was observed at relatively low field (δ_C 69.3) in ¹³C NMR spectrum: Kaden, S.; Reissig, H.-U. Org. Lett. 2006, 8, 4763-4766.